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ABSTRACT

Siliceous mesoporous molecular sieve (Si-MCM-41) material with highly ordered hexagonal pore arrangement was 
synthesized at 373 K for 8-days duration by hydrothermal method, dried at 393 K and calcined at 823 K in N2 atmosphere. 
The calcined Si-MCM-41 was later functionalized with 10-50 wt. % monoethanolamine (MEA) by impregnation method 
and dried in vacuum at 343 K. The MEA-Si-MCM-41 samples were characterized for their physicochemical properties with 
FTIR, XRD, TGA, HRTEM, FESEM, BET and elemental analysis. XRD results showed that the intensity of the characteristic 
peaks of Si-MCM-41 reduces with increasing loading of MEA indicating that the MEA molecules are loaded in the pores as 
well as on the surface of Si-MCM-41. The appearance of FTIR peaks corresponding to N-H, C-N and C-H bonds suggested 
that Si-MCM-41 has been functionalized with MEA. The presence of Si-O-Si peaks in FTIR spectra of MEA-Si-MCM-41 
samples indicates that the hexagonal pore arrangement remains intact and this is supported by HRTEM images. FESEM 
images show that MEA-Si-MCM-41 samples became agglomerated with increase loading of MEA. TGA analyses show that 
the MEA-Si-MCM-41 samples are thermally stable up to 528 K. N2 adsorption-desorption isotherms show that the textural 
properties of Si-MCM-41 material slowly change from a mesoporous material to non-porous material as the MEA loading 
increases due to pore filling effect during functionalization with MEA. Detection of N, C and H by elemental analysis 
confirms the presence of MEA in MEA-Si-MCM-41 samples. 
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ABSTRAK

Bahan penapis molekul berliang meso berasaskan silika (Si-MCM-41) dengan struktur liang secara heksagon yang 
sangat tersusun telah disintesis pada suhu 373 K selama 8 hari menggunakan kaedah hidroterma, dikeringkan pada 
393 K dan dikalsinkan pada 823 K dalam aliran N2. Si-MCM-41 yang telah dikalsinkan kemudiannya difungsikan 
dengan memuatkan 10-50 wt. % monoetanolamina (MEA) ke dalam liangnya menggunakan kaedah pengisitepuan dan 
dikeringkan menggunakan vakum pada suhu 343 K. Sifat fiziko kimia sampel MEA-Si-MCM-41 telah dianalisis dengan 
menggunakan FTIR, XRD, TGA, TEM, FESEM, BET dan analisis unsur. Keputusan XRD menunjukkan bahawa keamatan 
puncak Si-MCM-41 berkurangan dengan peningkatan muatan MEA menunjukkan bahawa molekul MEA telah dimuatkan 
ke dalam liang serta pada permukaan Si-MCM-41. Kehadiran puncak FTIR yang sepadan dengan ikatan N-H, C-N dan 
C-H mencadangkan bahawa Si-MCM-41 telah difungsikan oleh MEA. Kehadiran puncak Si-O-Si pada spektra FTIR bagi 
sampel MEA-Si-MCM-41 menunjukkan bahawa struktur liang secara heksagon masih utuh dan ini disokong oleh mikrograf 
HRTEM. Mikrograf FESEM menunjukkan bahawa sampel MEA-Si-MCM-41 menjadi bergumpal dengan peningkatan muatan 
MEA. Analisis TGA menunjukkan bahawa sampel MEA-Si-MCM-41 mempunyai kestabilan terma sehingga suhu 528 K. 
Isoterma penjerapan-penyahjerapan menunjukkan bahawa sifat tekstur bahan Si-MCM-41 berubah secara perlahan 
daripada bahan berliang meso kepada bahan tidak berliang setelah muatan MEA meningkat disebabkan kesan pengisian 
liang semasa pemfungsian dengan MEA. Pengesanan N, C dan H melalui analisis unsur mengesahkan kehadiran MEA 
di dalam sampel MEA-Si-MCM-41.

Kata kunci: MEA; pemfungsian; sifat fiziko kimia; Si-MCM-41

INTRODUCTION

MCM-41 is a mesoporous molecular sieve with hexagonal 
pore structure, uniform pore size over micrometer length 
scales and tunable pore size in the range of 15-100 Å 
(Beck et al. 1992; Kresge et al. 1992). It generally has 
surface area of greater than 700 m2/g and pore volume 
of at least 0.7 cm3/g. The MCM-41 has high thermal and 
hydrothermal stability, large number of hydroxyl (silanol) 

groups (~40-60%) and ease of surface modification (Beck 
et al. 1992; Cheng et al. 1995; Jiang et al. 2008). These 
remarkable properties make this material attractive for 
applications as catalyst/catalyst support (Corma et al. 
1995; Nazari et al. 2005), adsorption and separation 
(Belmabkhout et al. 2009; Rathousky et al. 1995), ion-
exchange (Kim et al. 1995) and environmental safety 
(Feng et al. 1997).
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	 Due to the remarkable characteristics of the MCM-41 
material, it has high potential as adsorbent for adsorption 
and separation of carbon dioxide (CO2) gas. Pure MCM-41 
has been reported to show low adsorption of CO2 at ambient 
temperature and pressure (Belmabkhout et al. 2009) which 
may be due to the weak interaction between Si-MCM-41 
and CO2. Thus, it is important to improve its adsorption 
capacity for CO2. Functionalization of mesoporous silica 
with polyethylenimine (PEI) has been reported to result in 
improvement of CO2 adsorption capacity and selectivity 
(Bhagiyalakshmi et al. 2010; Son et al. 2008).
	 This paper reports on the functionalization of Si-
MCM-41 with 10–50 wt. % MEA loading via impregnation 
method to study the effect of increasing MEA loading on 
the physicochemical properties of Si-MCM-41. 

MATERIALS AND METHODS

Si-MCM-41 was synthesized by hydrothermal method 
at 373 K for 8 days duration (Ramli et al. 2012). The 
synthesized Si-MCM-41 was functionalized with MEA 
via wet impregnation method similar to that reported by 
Ahmed et al. (2012). Typically, the required amount of MEA 
(Merck 99.9%) to give 10-50 wt. % loading was added to 
10 g of methanol (Merck 99.9%) and stirred for 15 min for 
complete dissolution of MEA. Then, 2 g of the synthesized 
Si-MCM-41 were dispersed into the amine solution with 
vigorous stirring for 30 min and later dried at 343 K for 
16 h in vacuum of 700 mm Hg. The resulted materials are 
denoted as X wt. % MEA-Si-MCM-41, where X represents 
the MEA loading in the sample. 
	 The X-ray diffraction (XRD) analysis was performed on 
Bruker D8 Advance diffractometer using monochromated 
Cu Kα radiation (l = 1.541 Å). The scanning was performed 
in the 2θ = 1-10o region with 0.010o step size and 4 s step 
time. Fourier transformed infrared (FTIR) spectra was 
acquired on a SHIMADZU 8400S spectrometer in the 400-
4000 cm-1 region. Surface morphology was investigated 
by variable pressure field emission scanning electron 
microscopy (VPFESEM) on ZEISS 55 Supra VP microscope 
operated at accelerated voltage of 5.00 kV and 30000 
magnifications. HRTEM images were recorded using a Zeiss 
Libra 200FE transmission electron microscope operated 
at an acceleration voltage of 200 kV. Thermal gravimetric 
analysis was carried out using thermal gravimetric analyzer 
TG/DTA EXSTAR 6300 SII (Japan) where the temperature 
was increased linearly from 303 to 1273 K at a heating 
rate of 10 K/min in N2 flow rate of 100 mL/min. Nitrogen 
adsorption-desorption measurements were carried out 
using Micromeritics ASAP 2020 analyzer with N2 as the 
adsorbate at 77 K. Si-MCM-41 sample was degassed for 2 
h at 523 K prior to the measurement while MEA-Si-MCM-41 
was degassed for 4 h at 373 K. Total surface area was 
obtained by multipoint Brunauer–Emmet–Teller method 
(BET) (Brunauer et al. 1938) and average pore diameter was 
determined by the Barret–Joyner–Halenda (BJH) (Barrett 
et al. 1951) method from the desorption branch of the 
isotherm. Elemental analysis for the determination of C, 

H and N contents were carried out using a LECO CHNS-932 
USA elemental analyzer. 

RESULTS AND DISCUSSION

In general, the diffractogram of pure Si-MCM-41 displays 
a unique three or four diffraction peaks in the 2θ = 1–10o 

region, which are also known as its fingerprints (Beck et 
al. 1994). The diffractograms of all samples are shown in 
Figure 1. Si-MCM-41 shows four diffraction peaks with a 
very sharp peak at ~2.1o which is assigned to (100) plane 
and three weaker peaks at 2θ = ~3.6, ~4.1 and ~5.5o which 
are assigned to (110), (200) and (210) planes, respectively. 

	 The presence of these distinct peaks in the XRD 
diffractogram confirm that the synthesized Si-MCM-41 has 
uniform hexagonal shape pore arrangement (Beck et al. 
1992). The appearance of peaks above 2θ = 3o shows that 
the material has fine long range order mesopores (Chuah et 
al. 2002), while lack of these peaks suggested the presence 
of disordered structure in the Si-MCM-41 (Blin et al. 2001). 
The unique characteristics of Si-MCM-41 is that it exhibits 
diffraction peaks only at low 2θ values indicating that 
arrangement of the atoms within the walls is essentially 
amorphous (Chuah et al. 2002).
	 The intensity of X-ray diffraction peaks of 
functionalized Si-MCM-41 materials depends on the type 

FIGURE 1. XRD diffractograms of (a) Si-MCM-41 (b) 10 wt. % 
(c) 20 wt. % (d) 30 wt. % (e) 40 wt. % and 

(f) 50 wt. % MEA-Si-MCM-41
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of material present in the pores and the scattering power of 
the host material. Low density material leads to an intense 
(100) diffraction peak while the material with highest 
density would generate a very weak (100) reflection. The 
changes in the intensity of the X-ray diffraction peaks of 
MEA-Si-MCM-41 are due to the difference in the scattering 
contrast between two building blocks of the MCM-41 
structure (i.e. amorphous silicate wall and MEA as the 
filling material). In general, the intensity of the X-ray peaks 
decreases with decreasing scattering contrast and is zero 
when the scattering power of the silicate wall and the pore 
filling material are similar (Marler et al. 1996).
	 The intensity of the diffraction peaks in MEA-Si-
MCM-41 samples decreases considerably as the MEA 
loading increases and the peaks above 2θ = 3o finally 
disappeared as the MEA loading reaches 50 wt. %. This 
may be due to a decrease in the scattering contrast of 
the silicate wall and the MEA present in the pores. The 
disappearance of the peaks at higher 2θ values is due 
to pore filling and successive structural construction of 
MEA with Si-MCM-41 (Bhagiyalakshmi et al. 2010). It is 
also noted that the diffraction peaks of MEA-Si-MCM-41 
samples shifted slightly towards higher 2θ values. These 
observations indicate the successful loading of MEA either 
into the pore channels or on the surface of the Si-MCM-41 
(Son et al. 2008; Xu et al. 2002). 
	 FTIR spectra of all samples are shown in Figure 2. FTIR 
spectra of Si-MCM-41 shows the presence of a broad peak 
in the 3100-3700 cm-1 region which is attributed to –OH 
stretching of surface silanol groups (Si-OH) and adsorbed 
water molecules while a peak at ~1635 cm-1 represents 
the bending vibration of the adsorbed water molecules 
(H-O-H). The symmetric and asymmetric stretching of 
Si-O in Si-O-Si are represented by the peak at ~1080 cm-1 

with a shoulder at ~1240 cm-1 and accompanied by a peak 
at 794 cm-1. The characteristic peak of Si-MCM-41 appears 
at ~964 cm-1 which is corresponding to the stretching of 
Si-O- (Si-OH) present on the surface of the mesoporous 
material (Grisdanurak et al. 2003; Jiang et al. 2008; Liu 
et al. 2004; Romero et al. 1997).
	 Noticeable changes are observed after functionalization 
of the Si-MCM-41 with MEA. The intensity of the peaks at 
~3450 and ~1635 cm-1 which are due to -OH stretching 
and bending vibrations first reduces when the MEA loading 
was increased to 20 wt. % but later the intensity of the 
peaks increases as the MEA loading was increased. At lower 
loading of MEA, the intensity of these peaks reduces due to 
the attachment of MEA to the surface silanol group in the 
hexagonal channels. Once the pores are filled with MEA, 
excess MEA would be deposited on the outer surface of 
Si-MCM-41 which enables its detection, thus increases the 
intensity of the peaks correspond to -OH stretching and 
bending vibrations.
	 The intensity of the characteristic peak at 964 cm-1 due 
to Si-O-H bending of silanol groups decreases gradually 
and finally disappeared as the MEA loading was increased to 
50 wt. %. This suggests that there is a chemical interaction 

between the silanol groups on the surface of the Si-MCM-41 
and the amine groups of MEA, which may form Si-O-N+H2R 
or Si-O-N+HR interaction. Such chemical interaction works 
as an anchor on the surface of MCM-41 and keeps MEA in 
the pore channels (Ma et al. 2009). These sites may act as 
active sites for CO2 adsorption (Drage et al. 2008; Son et 
al. 2008).
	 The intensity of the peaks at ~1450, ~1550 and ~1315 
cm-1 which are corresponding to C-H bending, N-H or NH2 
bending (Bhagiyalakshmi et al. 2010; Drage et al. 2008) 
and -C-N vibration, respectively, increases as the MEA 
loading increases. The intensity of the peaks at ~2850 and 
~2960 cm-1 corresponding to C-H stretching associated 
with MEA also increases gradually as the MEA loading 
increases (Yue et al. 2008). These peaks were absent in 
the pure Si-MCM-41 sample and only detected in MEA-Si-
MCM-41 samples, hence confirms that Si-MCM-41 has been 
functionalized with MEA.

FIGURE 2. FTIR spectra (a) Si-MCM-41 (b) 10 wt. % (c) 20 wt. % 
(d) 30 wt. % (e) 40 wt. % and (f) 50 wt. % MEA-Si-MCM-41
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	 Surface morphology of Si-MCM-41 and MEA-Si-
MCM-41 are shown in Figure 3. FESEM micrograph of pure 
Si-MCM-41 shows that Si-MCM-41 is composed of spherical 
particles along with irregular shaped particles in the form 
of agglomerates of different sizes. During functionalization 
of Si-MCM-41 with MEA, the MEA molecules were first 
deposited into the pores. When the pores are filled with 
MEA molecules, excess MEA would be deposited on the 
outer surface resulting in agglomeration of the mesoporous 
material. Figure 3(e) - 3(f) shows that there are many large 
external pores between the particles, which will improve 
the diffusion of gas molecules from bulk gas phase to the 
surface of the material (Ma et al. 2009).

FIGURE 3. Morphology of (a) Si-MCM-41 (b) 10 wt. % 
(c) 20 wt. % (d) 30 wt. % (e) 40 wt. % and 

(f) 50 wt. % MEA-Si-MCM-41

	 HRTEM images of Si-MCM-41 and MEA-Si-MCM-41 
are shown in Figure 4. It can be seen that Si-MCM-41 is 
a highly ordered material with uniformly arranged pores 
of hexagonal shape or also known as honeycomb-like 
structure. The HRTEM images of MEA-Si-MCM-41 samples 
show noticeable uniform pores of hexagonal shape which 
indicate that the pore arrangement remains intact even after 
functionalization with MEA.
	 TGA profiles of MEA-Si-MCM-41 samples are shown 
in Figure 5. In general, three steps of weight loss were 
observed. The first step is observed at temperatures 
between 308–443 K which is due to removal of adsorbed 
moisture from the samples followed by a sharp weight 
loss between 423–688 K which may be attributed to the 
volatilization and degradation of MEA as its boiling point 
is 443 K and finally a gradual weight loss between 663-

FIGURE 4. HRTEM images of (a) Si-MCM-41 (b) 10 wt. % 
(c) 20 wt. % (d) 30 wt. % (e) 40 wt. % and (f) 50 wt. % 

MEA-Si-MCM-41

1273 K. It is also observed that the thermal stability of 
MEA-Si-MCM-41 decreases as the MEA loading increases 
which could be attributed to the uniform distribution of 
MEA in the mesopores and on the outer surface of the MEA-
Si-MCM-41.

FIGURE 5. TGA profiles of samples (a) 10 wt. % (b) 20 wt. % 
(c) 30 wt. % (d) 40 wt. % and (e) 50 wt. % MEA-Si-MCM-41
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	 Table 1 shows the degradation temperature of the MEA-
Si-MCM-41 samples. As the MEA loading was increased, 
the sharp weight loss due to degradation of MEA occurred 
progressively at lower temperatures. This suggests that 
at low loading most of the MEA molecules are strongly 
bonded to the silanol groups in a monolayer and bi-layer 
forms thus will degrade at higher temperature. However, 
as the MEA loading increases, these molecules are loaded 
in a multi-layer form, hence most of the MEA molecules 
are weakly bonded to the silanol group and hence they are 
easier to degrade.
	 Figure 6 shows the N2 adsorption-desorption 
isotherms of all samples. Si-MCM-41 shows Type IV 
isotherm according to the IUPAC classification which is a 
characteristics of a mesoporous material (Liu et al. 2004; 

Sing et al. 1985). Functionalization of Si-MCM-41 with 
MEA resulted in pore filling of the mesoporous material as 
the MEA loading was increased from 10-50 wt. %. This is 
indicated by progressive changes in the isotherm to Type 
III isotherm which is the characteristics of a non-porous 
material. The decrease in surface area, average pore size 
and total pore volume of the MEA-Si-MCM-41 samples with 
an increase in MEA loading (Table 2) are in accordance with 
pore filling effect by MEA which have been observed in 
XRD, FESEM and HRTEM analysis. Since the N2 adsorption-
desorption isotherms show that MEA-Si-MCM-41 loaded 
with 40 and 50 wt. % MEA are non-porous material (Type 
III material), these materials are considered as not having 
pore size or the pore size is negligible, since the pores have 
been filled by MEA molecules, as shown in Table 2.

TABLE 1. Weight loss temperature ranges of MEA functionalized MCM-41 samples

Sample Moisture removal 
(K)

MEA decomposition Sharp weight 
loss (K)Weakly bonded (K) Strongly bonded (K)

10 wt. % MEA-Si-MCM-41
20 wt. % MEA-Si-MCM-41
30 wt. % MEA-Si-MCM-41
40 wt. % MEA-Si-MCM-41
50 wt. % MEA-Si-MCM-41

308-423
308-428
308-433
308-438
308-443

423-663
428-668
433-673
438-683
443-688

663-1273
668-1273
673-1273
683-1273
688-1273

573
543
538
533
528

FIGURE 6. Adsorption-desorption isotherms of (a) Si-MCM-41 (b) 10 wt. % (c) 20 wt. % 
(d) 30 wt. % (e) 40 wt. % (f) 50 wt. % MEA-Si-MCM-41
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	 Table 3 shows the C, H and N content in MEA-
Si-MCM-41 samples as determined by CHNS elemental 
analyzer and the values are compared with the theoretical 
content. Theoretical content of C, H and N were calculated 
from the actual amount of MEA used for functionalization. 
The C, H and N content in MEA-Si-MCM-41 were found 
to increase with increasing loading of MEA which are in 
good agreement with the theoretical values. However, 
the deviation from the theoretical values became greater 
at higher loading of MEA which may indicate that not all 
MEA were loaded into the pores and on the outer surface 
of Si-MCM-41.

CONCLUSION

Si-MCM-41 was functionalized with 10-50 wt. % MEA 
via impregnation method. The intensity of diffraction 
peaks attributed to Si-MCM-41 fingerprints decreases 
with increasing loading of MEA due to pore filling and 
attachment of MEA on the external surface of Si-MCM-41. 
The presence of characteristic peaks at 794, 1080 and 
1240 cm-1 in the FTIR spectra show that the Si-MCM-41 
framework remains intact after functionalization and 
this is supported by HRTEM images. Appearance of 
new FTIR peaks at 1450, 1545, 2850 and 2960 cm-1 
and detection of C, H and N by elemental analysis on 
the MEA-Si-MCM-41 confirm that Si-MCM-41 has been 
successfully functionalized with MEA. Thermal stability 
of the MEA-Si-MCM-41 decreases with increasing loading 
of MEA. The textural properties of Si-MCM-41 changes 
from mesoporous to non-porous material due to pore 
filling effect by the MEA but the hexagonal pore shapes 
remain intact.
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